Artificial Intelligence and Machine Learning Based Approach to Motivate and Assist Primary School ADHD Children

1Balage Diniru Sandipa, 2Dulakshi Madhuhansani Mitratne, 3Madapathage Dona Ashani Isurika, 4Dulanga Semini Kandanaarachchi, 5Samadhi Chathuranga Rathnayaka, 6Wishalya Wanshanee Tissera

1,2,3,4,5,6Department of Computer science and Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Authors E-mail: 1dinirusandipa913@gmail.com, 2madhuhansanidulakshi@gmail.com, 3ash.isurika@gmail.com, 4dulangasemini99@gmail.com, 5samadhi.r@sliit.lk, 6wishalya.t@sliit.lk

Abstract - Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder among primary school children that significantly impacts their academic performance and social interactions. Traditional interventions for ADHD children often lack personalization and struggle to engage and motivate them effectively. This research paper proposes an innovative approach that leverages Artificial Intelligence (AI) and Machine Learning (ML) techniques to develop a personalized intervention system for motivating and assisting primary school children with ADHD. This study includes designing and developing an AI and ML-based intervention system tailored to the unique characteristics and preferences of ADHD children. The system will incorporate adaptive features to customize the intervention content, difficulty level, and feedback mechanism based on individual needs. Furthermore, the effectiveness of the intervention will be evaluated through standardized ADHD assessments, focusing on improvements in attention, impulsivity, and hyperactivity levels. Ethical considerations regarding privacy, data security, and potential risks associated with AI and ML interventions will be addressed to ensure the responsible and ethical deployment of these technologies. Practical recommendations will be provided for parents, and professionals to facilitate the implementation of AI and ML interventions in primary school settings.

Keywords: Attention Deficit Hyperactivity Disorder, ADHD, Artificial Intelligence, Machine Learning.

I. INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) has been recognized as a prevalent and complex neurodevelopmental disorder affecting children's cognitive and behavioral functions. First described by Sir George Still in 1902, ADHD has since garnered significant attention from researchers, clinicians, and educators seeking effective interventions for affected children.[1] This paper presents a novel approach utilizing an Android application to enhance ADHD diagnosis, treatment, and evaluation.

The historical roots of ADHD can be traced back to early observations made by physicians and researchers. Notable contributions include the work of Melchior Adam Weikart in the late 18th century, who described "attention deficit" symptoms in children.[2] Further advancements were made by Sir George Still, who provided a comprehensive clinical description of "defects of moral control" in children in 1902, laying the foundation for future research.[1]

The diagnostic criteria for ADHD have evolved over time to encompass a broader understanding of the disorder. The Diagnostic and Statistical Manual of Mental Disorders (DSM), currently in its fifth edition (DSM-5), has played a pivotal role in standardizing the diagnosis of ADHD by incorporating new insights and research findings.[3]

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder characterized by persistent patterns of inattention, hyperactivity, and impulsivity that significantly impair functioning and development. It encompasses three subtypes: predominantly inattentive, predominantly hyperactive-impulsive, and combined presentation.

A) Background

Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder affecting a significant number of children worldwide. Early diagnosis and effective treatment are crucial in managing ADHD symptoms and promoting better outcomes for affected children.[2] This research aims to address these challenges by developing an Android application that combines diagnostic scaling, interactive storytelling, personalized treatment approaches, and effectiveness.
evaluation. Overall application contains four components as diagnostic scaling system, interactive speaking bot, personalized treatment model and effectiveness evaluation system.

1) Diagnostic Scaling System

Attention-Deficit/Hyperactivity Disorder (ADHD) is a diagnostic scaling system refers to a structured approach that utilizes a set of questions, observations, and assessments to evaluate the presence and severity of ADHD symptoms. It provides a standardized framework for diagnosing ADHD and assessing symptom severity.

2) Interactive Speaking Bot

An interactive speaking bot is an artificial intelligence-based system that engages with users, in this case, children, through spoken interaction. The bot generates stories related to ADHD symptoms, asks questions, and analyses the child's responses to provide insights into their cognitive and emotional state.

3) Personalized Treatment

Personalized treatment involves tailoring interventions to meet the specific needs of individuals. In the context of ADHD, it aims to identify the learning preferences and behavioural patterns of each child, allowing for more effective and targeted interventions.

4) Effectiveness Evaluation

Effectiveness evaluation refers to the systematic assessment of the impact and outcomes of interventions and treatments for ADHD. It involves measuring progress, calculating metrics, and providing feedback and recommendations based on the observed improvements or lack thereof.

B) Existence of Evidence

In recent years, there has been a growing trend towards replacing traditional paper-based observation methods with mobile apps to save time and enhance the accuracy and reliability of results for patients. While several attempts have been made in this direction, most of the existing solutions primarily cater to adults and focus on providing treatments and games for improvement rather than diagnostic tools. Those treatments are also not addressing to each child specifically.

Such as "ADHD test" that offers a self-report scale specifically designed for adults, but it does not serve as a diagnostic tool or treatment or evaluation system. Another example is a brain healthy app called "Khan Academy Kids," which offers a wide range of educational activities, books, songs, and games aimed at improving the ADHD brain. This also does not focus each child uniquely. Furthermore, the "WHAAM" mobile application allows parents, teachers, and healthcare professionals to plan and assess interventions for children with ADHD who exhibit problematic behaviors [5]. However, none of these solutions directly engage children in the diagnostic process nor focus each child specifically.

C) Research Gap

Regardless of the growing interest in the field of Artificial Intelligence (AI) and Machine Learning (ML) for supporting individuals with attention deficit hyperactivity disorder (ADHD), there remains a significant research gap in the application of AI and ML specifically for motivating and assisting primary school children with ADHD. While there have been studies researching the use of technology-based interventions for ADHD children, such as computerized training programs or mobile applications, the integration of AI and ML techniques in these interventions is rather limited.

One research gap refers to the customization and personalization of interventions. Although existing technological interventions for ADHD children often provide standardized approaches, AI and ML have the potential to tailor interventions based on the unique characteristics, conditions, and preferences of each child. Customization could implicate adjusting the intervention's difficulty level, content, or feedback mechanism based on the child's progress and individual characteristics. This personalized approach could enhance concentration, motivation, and overall effectiveness of interventions for primary school children with ADHD. [6]

Another research gap is the exploration of AI and ML techniques for real-time monitoring and assessment of ADHD symptoms in primary school settings. Traditional methods of evaluating ADHD symptoms typically rely on personal observations or retrospective reporting, which may be prone to biases and inaccuracies. The integration of AI and ML technologies could enable the development of innovative tools that can objectively assess ADHD symptoms in real time, such as through analyzing behavioral patterns, physiological signals, or speech patterns. These technologies could provide valuable insights into the child's attention, impulsivity, and hyperactivity levels, enabling convenient interventions and support. [7]

Furthermore, there is a lack of research examining the ethical considerations and potential risks associated with AI and ML interventions for primary school ADHD children. The use of AI and ML algorithms extends concerns about privacy, data security, and the potential for unintended consequences. It is crucial to analyze and address these ethical issues to
ensure the responsible and ethical deployment of AI and ML technologies in supporting primary school children with ADHD.

While there have been advancements in utilizing technology-based interventions for ADHD, there are a research gap in leveraging AI and ML approaches to motivate and assist primary school ADHD children. Exploring the personalization of interventions, real-time monitoring, and assessment techniques, and addressing ethical considerations are critical areas that require further analysis. These would contribute to the development of effective and personalized interventions that can support the specific needs of primary school children with ADHD.

D) Objectives

The primary objective of this research is to design and develop a novel intervention system that utilizes AI and ML techniques to engage and motivate primary school children with ADHD. The system should be versatile and contrive, figuring out individual differences and preferences to enrich the effectiveness of the intervention.

Then to evaluate the effectiveness of the AI and ML-based intervention in improving ADHD symptoms, it focuses on assessing the impact of the developed intervention system on ADHD symptoms among primary school children. The effectiveness of the intervention will be measured through standardized ADHD assessment tools, such as rating scales and behavioral observations, to determine any improvements in attention, impulsivity, and hyperactivity levels. [8]

Another objective is to explore real-time monitoring and assessment techniques using AI and ML for ADHD symptoms. This objective aspires to investigate the feasibility and accuracy of using AI and ML algorithms to monitor and assess ADHD symptoms in real time. The objective is to develop innovative techniques that can analyze behavioral patterns and speech patterns to provide factual measurements of ADHD symptoms during intervention sessions[9]. The effectiveness and reliability of these techniques will be evaluated and compared to conventional assessment methods.

Also, to identify and address ethical considerations associated with AI and ML interventions for primary school ADHD children, focusing on examining the ethical substances and potential risks associated with using AI and ML technologies in supporting primary school children with ADHD. It involves identifying privacy concerns, ensuring data security, and addressing any inadvertent consequences that may occur from the use of these technologies. The objective is to conceive procedures and recommendations for the responsible and ethical deployment of AI and ML interventions in this context.

E) Scope

The scope of this research focuses on primary school children (typically aged 6-11 years) diagnosed with attention deficit hyperactivity disorder (ADHD). The research particularly analyses the application of Artificial Intelligence (AI) and Machine Learning (ML) techniques to develop interventions aimed at motivating and assisting these children.

The research will involve the development of an AI and ML-based intervention system tailored to the necessities of primary school children with ADHD. The system will be designed to amuse and motivate children by utilizing adaptive and contrive features. The customization may include adjusting the difficulty level, content, or feedback mechanism based on respective features and preferences.[10]

The evaluation of the intervention system's effectiveness will be conducted through quantitative measures, such as standardized ADHD assessment tools, including rating scales or behavioral observations. The objective is to assess improvements in ADHD symptoms, including attention, impulsivity, and hyperactivity levels among the participating children. [11]

Ethical considerations related to the use of AI and ML interventions for primary school children with ADHD will be addressed. This includes identifying and addressing privacy concerns, data security, and potential unintended consequences. The research aspires to deliver approaches and recommendations for the responsible and ethical deployment of AI and ML technologies in this context.

II. LITERATURE REVIEW

A) ADHD in Children: Symptoms and Challenges

ADHD (Attention-Deficit/Hyperactivity Disorder) is a prevalent neurodevelopmental disorder that affects children and adolescents. It is characterized by persistent patterns of inattention, hyperactivity, and impulsivity that significantly impair daily functioning and development [12]. The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) provides standardized criteria for diagnosing ADHD, including specific symptoms and age-related criteria [12].

The symptoms of ADHD can manifest differently in children, but commonly include:

- Inattention: Difficulty sustaining attention, being easily distracted, overlooking details, and making careless mistakes.
• Hyperactivity: Excessive motor activity, restlessness, fidgeting, and difficulty staying seated or engaging in quiet activities.
• Impulsivity: Acting without thinking, interrupting others, difficulty taking turns, and being impatient [12].

These symptoms can lead to various challenges for children with ADHD. They may struggle academically, experience difficulties in social interactions and relationships, and have impaired emotional regulation [13]. ADHD can also have long-term effects, including increased risk for other mental health disorders, lower educational attainment, and problems with employment and criminality [13].

It is important to note that ADHD is a heterogeneous disorder, and individuals with ADHD can exhibit different subtypes and symptom profiles. These variations may have implications for diagnosis, treatment, and intervention strategies [12].

Understanding the symptoms and challenges associated with ADHD is crucial for developing effective interventions and support systems for children with ADHD. By addressing the unique needs and difficulties faced by these children, it is possible to enhance their overall well-being and improve long-term outcomes [13].

B) Existing Approaches for ADHD Intervention

In the current treatment process, there are so many interventions including medication, behavioral therapies, parent training and mindfulness interventions. Those are as follows,

1) Medication: Medication is a commonly used approach for ADHD intervention. Stimulant medications, such as methylphenidate (Ritalin) and amphetamines (Adderall), are often prescribed to help manage the core symptoms of ADHD, including inattention, hyperactivity, and impulsivity. Non-stimulant medications like atomoxetine (Strattera) and guanfacine (Intuniv) are also used as alternatives or in combination with stimulant medications [14].

2) Cognitive-Behavioral Therapy (CBT): CBT is a psychotherapeutic approach that aims to modify negative thoughts and behaviors associated with ADHD. It helps individuals develop strategies to improve executive functions, enhance self-control, and manage time and tasks effectively. CBT can also address emotional regulation, self-esteem, and social skills, which are commonly affected by ADHD [15].

3) Parent Training and Education: Parent training programs provide education and guidance to parents on understanding and managing ADHD symptoms in their children. These programs teach parents behavioral management strategies, effective communication techniques, and how to create structured and supportive environments for their children. By improving parenting skills, these interventions aim to reduce ADHD-related impairments and enhance child-parent relationships [13].

4) School-Based Interventions: Schools play a crucial role in supporting children with ADHD. Accommodations and modifications in the classroom, such as providing a structured and predictable environment, implementing behavior management techniques, and individualized education plans, can help address the specific learning needs of students with ADHD. Special education services, academic interventions, and social skills training may also be provided to support academic and social functioning [13].

5) Behavioral Interventions: Behavioral interventions focus on reinforcing desired behaviors and reducing problem behaviors associated with ADHD. These interventions use strategies such as token economies, behavior charts, and contingency management to promote positive behaviors and provide consequences for negative behaviors. They can be implemented at home, school, or in specialized therapy settings [15].

6) Mindfulness and Mind-Body Interventions: Mindfulness-based approaches, such as mindfulness meditation and yoga, have shown promise in improving attention, self-regulation, and overall well-being in individuals with ADHD. These practices help individuals enhance their awareness, reduce stress, and develop self-compassion. They can be used as adjunctive interventions alongside other treatment approaches [13].

C) Machine Learning and AI Applications in Education

Machine learning and AI have found numerous applications in education, revolutionizing the way we teach and learn. Here are some key applications of machine learning and AI in education,

1) Personalized Learning: AI technologies can create adaptive learning environments tailored to individual students' needs and learning styles. Machine learning algorithms analyze student data to identify their strengths, weaknesses, and preferences, allowing for personalized content delivery, adaptive assessments, and targeted interventions [16].

2) Intelligent Tutoring Systems: AI-powered tutoring systems provide students with interactive and personalized guidance. These systems use natural language processing, machine learning, and data analytics to assess student performance, offer feedback, and deliver customized learning materials [17].
3) Automated Grading and Assessment: AI technologies can automate the grading and assessment process, saving teachers time and providing timely feedback to students. Machine learning models can analyze student responses, essays, and projects, enabling efficient evaluation and generating insights to improve teaching strategies [18].

4) Intelligent Content Creation: AI tools can assist in the creation of educational content. Natural language generation algorithms can generate interactive lessons, quizzes, and explanations based on educational materials and learning objectives. This helps educators create engaging and customized content more efficiently [16].

5) Virtual Reality (VR) and Augmented Reality (AR): VR and AR technologies enhance the learning experience by creating immersive and interactive environments. These technologies can simulate real-world scenarios, allowing students to explore complex concepts, historical events, or scientific phenomena in a more engaging and hands-on way[16].

6) Educational Data Mining: Machine learning techniques enable the analysis of large educational datasets to discover patterns, trends, and insights. This information can be used to improve curriculum design, identify at-risk students, optimize teaching methods, and inform decision making processes in educational institutions [17].

7) Intelligent Recommender Systems: AI-powered recommender systems can suggest appropriate learning resources, books, articles, or online courses based on individual learner profiles and preferences. These systems leverage machine learning algorithms to provide personalized recommendations, facilitating self-directed learning [18].

8) Natural Language Processing (NLP): NLP techniques enable machines to understand and generate human language. AI applications utilize NLP to create chatbots, virtual assistants, and language tutors, enabling interactive and conversational learning experiences [16]. These applications of machine learning and AI in education have the potential to enhance teaching effectiveness, improve learning outcomes, and promote personalized and inclusive education. However, it is crucial to address ethical considerations, data privacy, and ensure responsible implementation to maximize the benefits and minimize potential risks [18].

III. METHODS AND MATERIALS

A) Materials used in the experiments

1) Data Sources: For this research, primary data sources were utilized, including children diagnosed with attention deficit hyperactivity disorder (ADHD) in primary school settings. Data collection involved obtaining informed consent from parents and guardians of the participating children. Additionally, secondary data sources such as scholarly articles, research papers, and existing datasets related to ADHD were reviewed and analyzed to gather relevant information for model development and evaluation.[19]

2) Documentation and Reporting: Throughout the research process, meticulous documentation and reporting were maintained to ensure transparency, reproducibility, and clarity of the experiments conducted. This included keeping track of code implementations, parameters used, and experimental results. Documentation was done using version control systems like Git, along with detailed comments and annotations within the codebase. The use of Jupyter Notebooks facilitated the integration of code, visualizations, and explanatory text, making the research process more accessible and comprehensible.[21]

3) Ethical Considerations: Ethical considerations were given utmost importance in this research to safeguard the rights and well-being of the participating children. The research protocol was reviewed and approved by the relevant ethical review board or institutional review board (IRB). Informed consent was obtained from parents or guardians, explaining the purpose, procedures, and potential benefits of the research. Strict data privacy and confidentiality measures were implemented to protect the sensitive information of the participants. Anonymization techniques were applied to ensure that individual identities could not be discerned from the data.[22]

B) Procedure

Interpretation and Analysis of Results: The trained models were evaluated using appropriate performance metrics, and their predictions were further analyzed and interpreted. The interpretability of the models was assessed to understand the underlying factors contributing to the predictions. Feature importance analysis, SHAP values, and other interpretability techniques were employed to gain insights into the model's decision-making process. These analyses aimed to provide a deeper understanding of the relationships between input features and ADHD symptoms, facilitating the identification of potential intervention strategies.[22]

IV. RESULTS AND DISCUSSION

A) Machine learning based diagnosis and classification of attention deficit and hyperactivity disorder in children

Based on the accuracy scores obtained, it is evident that all the models performed relatively well in predicting ADHD presence. Both the Random Forest and Decision Trees models
achieved the highest accuracy score of 0.87, closely followed by Logistic Regression with an accuracy score of 0.86, and SVM with an accuracy score of 0.85.

Considering the high accuracy scores achieved by both Random Forest and Decision Trees, further evaluation and comparison of these models are necessary to determine the best choice for this research. Additional factors such as interpretability, computational efficiency, and robustness to variations in the dataset should also be considered during the selection process.

B) How to use machine learning and AI to help ADHD children between 6-11 years old

The results of our study indicate varying levels of accuracy among the different machine learning models used for classification in helping ADHD children between the ages of 6 and 11.

Overall, the Gradient Boosting Classifier emerged as the top-performing model, followed closely by the Random Forest Classifier and the voice classification models. These findings provide valuable insights into the performance of different machine learning algorithms and highlight their potential applications in diagnosing ADHD.

The success of the Gradient Boosting Classifier in identifying ADHD symptoms in children through textual data analysis is a significant milestone in the development of a speaking bot for ADHD diagnosis. Similarly, the accuracy of the CNN model in voice classification contributes significantly to the overall performance of the speaking bot. These research findings demonstrate the potential of machine learning algorithms in facilitating accurate ADHD diagnosis using both text and voice data.

The combination of machine learning algorithms, specifically the Gradient Boosting Classifier and CNN model, paves the way for an intelligent and efficient bot capable of accurately assessing ADHD symptoms. The development of such a speaking bot holds immense promise for revolutionizing the process of ADHD diagnosis, providing a comprehensive and objective assessment that improves accuracy and efficiency.

C) Utilizing Machine Learning and AI for Learning Preference Identification and Tailored Activities for ADHD children

The current phase of the research focused on the identification of learning technique preferences among ADHD children.

It is important to note that the subsequent phase, involving the development and implementation of personalized questions and activities based on the identified learning preferences, is pending completion. Thus, the findings and discussion presented in this section solely pertain to the initial stage of the research, and the comprehensive analysis encompassing the intervention phase is yet to be conducted. The integration of tailored interventions aligned with individual learning preferences is expected to provide valuable insights into their effectiveness and impact on ADHD children's learning experience.

D) Examining the Advancement of Children's Recovery from ADHD and Offering Guidance to Parents: A Comprehensive Analysis

The trained models in this component provided predictions of the cure progress of specific children with ADHD based on their demographic details, symptoms, and other relevant information.

These findings provide valuable insights into predicting the cure progress of children with ADHD and can assist parents and healthcare professionals in understanding and managing the treatment journey. By leveraging machine learning models, it becomes possible to improve the accuracy and effectiveness of interventions for children with ADHD.

Overall, the integration of machine learning and AI techniques in diagnosing and supporting ADHD children between the ages of 6 and 11 shows promising results. The combination of accurate classification algorithms, learning preference identification, and prediction of cure progress contributes to bridging the gap between traditional observation methods and innovative technology, leading to more advanced and reliable diagnostic tools and personalized interventions.

V. CONCLUSION

This research paper explored the potential of an Artificial Intelligence (AI) and Machine Learning (ML) based approach to motivate and assist primary school children with Attention Deficit Hyperactivity Disorder (ADHD). The study focused on four key components: developing activities for diagnosed children, analyzing cure progress, and making recommendations, implementing a chatbot for diagnosing ADHD, and diagnosing ADHD using machine learning.

Through the development of personalized activities, AI and ML techniques can enhance engagement and effectiveness in improving the symptoms of ADHD children. These activities can be tailored to manage individual needs and preferences, providing a more targeted and exciting intervention approach.
The analysis of cure progress using AI and ML algorithms enables objective monitoring of attentiveness and impulsivity, permitting accurate measurements and personalized recommendations. By assessing behavioral patterns and performance data, parents can receive valuable insights to support the child’s development and tailor interventions accordingly.

Machine Learning algorithms contribute to the accurate diagnosis of ADHD based on various data sources, including behavioral assessments. The integration of AI and ML techniques enhances diagnostic accuracy, facilitating early identification and targeted interventions for primary school ADHD children.

Overall, this research paper emphasizes the promising role of AI and ML-based approaches in motivating and assisting primary school children with ADHD. However, it is essential to address ethical considerations, and data privacy, and ensure responsible deployment of these technologies. Future research should focus on refining and validating these approaches in real-world settings, exploring their long-term effectiveness, and assessing their impact on academic performance, social interactions, and the overall well-being of primary school ADHD children.

By welcoming the potential of AI and ML, parents, and pediatricians can delegate ADHD children with personalized interventions, improving their educational outcomes and quality of life. The integration of technology and invention holds a great commitment to supporting the distinctive needs of primary school children with ADHD and improving their overall expansion.

REFERENCES

AUTHORS BIOGRAPHY

Balage D. S.,
Department of Computer science and Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.

Mitraratne D. M.,
Department of Computer science and Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.

Isurika M. D. A.,
Department of Computer science and Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.

Kandanaarachchi H. L. D. S.,
Department of Computer science and Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka.

Citation of this Article:
